





# Managing Buildings and Grounds for Air Quality

# Louisville









# Why Buildings and Grounds?

Everyday activities and operations contribute to air pollution

- Maintenance
  - Painting, paving, roofing, etc.
  - Gas-powered grounds keeping equipment
- Operations
  - Energy Use
  - Fleets and other vehicle use





## Summer Air Quality Issues

- The summer season compounds Louisville's air quality issues
  - Sunlight and stagnant air masses increase favorable conditions for ozone and fine particle formation
- Careful timing of emission-generating projects can help reduce pollution
  - Plan projects from October to March
  - Plan activities for the coolest parts of the day (morning and evening)
  - Adjust project schedules and daily activities for air quality alerts

#### **Ozone**

- What is it?
  - Created through chemical reaction:
     NOx + VOC + Sunlight = O<sub>3</sub>
- Where does it come from?
  - Gasoline engines
  - Gasoline and other petroleum vapors
  - Paint and solvents
  - Natural sources





#### Particulate Matter

What is it?

 A complex mixture of particles and liquid droplets found in the air

Categories:

Coarse Particles (PM<sub>10</sub>)

Fine Particles (PM<sub>2.5</sub>)





#### Fine Particles



- Where do they come from?
  - Primary Emissions are directly emitted from a source
    - Coal-fired power plants
    - Construction sites
    - Industrial processes
    - Diesel engines
  - Secondary Emissions are formed when gases, such as SO<sub>2</sub> and NOx, react in the air
    - Coal-fired power plants
    - Industrial processes
    - Gasoline and diesel engines

# How can your business help improve Louisville's air quality?





# Managing Buildings and Grounds for Air Quality

May 25, 2010

#### **Bob Miles**

Senior Sustainability Engineer

#### Cheryl Eakle

Sustainability Engineer

#### Victoria Kmiec

Student Engineer

#### What is KPPC?

- □ KPPC is a non-profit organization established in 1994 through a state legislative mandate
- Provides statewide technical assistance & outreach programs
- Based at the U of L's J.B. Speed School of Engineering
- Represents the *University* as a nationally recognized Center of Excellence
- Provides hands-on training for students through the Cooperative Education Program at SSoE

**Core Programs:** 



**Environmental Sustainability** 



Kentucky Energy Efficiency Program for Schools



**Kentucky Renewable Energy Consortium** 



#### **KPPC**

#### <u>Mission</u>

KPPC is Kentucky's primary resource to help businesses, industries and other organizations develop environmentally sustainable, cost-saving solutions for improved efficiency.

Based at the University of Louisville J.B. Speed School of Engineering, KPPC provides technical information and assistance that is free, confidential and non-regulatory.





# **Grounds Maintenance and Vehicle Operations**

## Victoria Kmiec

Student Engineer

#### **Paint**

#### ■What to look for?

✓ Low VOC (Volatile Organic Chemicals)

- ✓ Latex based
  - Can be thinned with water
  - Cleaned with soap and water

#### ■Why eco friendly paint?

- ✓ Increases indoor air quality
- ✓ Lowers water toxicity

#### Plan outside of "ozone season"

✓ March-October





### Green Purchasing

#### Cleaning Products



- ✓ Natural ingredients
- ✓ Green cleaning services
- Business/Office Supplies
  - ✓ Made from recycled materials
  - Buying from local businesses



U.S. EPA Environmentally Preferable Purchasing (EPP) <a href="www.epa.gov/epp">www.epa.gov/epp</a>



#### Grounds Upkeep

- Maintain grounds equipment
- Landscaping
  - ✓ Local nurseries
  - ✓ Use Louisville/KY native plants
    - Low maintenance
  - Prevents flooding and runoff
  - ✓ Good insulators
  - Organic fertilizers and composting
    - Don't over fertilize



✓ Avoid using gas-powered equipment







#### **Vehicles**

- ■Ways to get to work
  - ✓ Public transportation/carpool
  - ✓ Bike or walk
- Regular vehicle maintenance
- Plan efficient routes
  - ✓ Combine errand into one trip
- □Idling
  - Establish policy



✓ Idling greater than 10 seconds uses more fuel than restarting the engine (California Energy Commission)

IDLING=ZERO MPG





# Improving the Energy Efficiency of your Facility

# Cheryl Eakle Sustainability Engineer

#### **Utility Bills**

- Determine a "baseline" of energy usage for all facilities
  - ✓ Identify high usage facilities
    - Electricity, natural gas, water
  - ✓ Identify energy saving opportunities for these facilities
  - Develop and continue to track energy benchmarks
    - Costs (\$/production unit, \$/ft²)
    - Energy (kBtu/ft², kBtu/production unit)
    - Demand (kW/mo) (If Applicable)



#### **Identify Opportunities**

- Perform Energy Audit
  - ✓ Identify and form an energy audit team
    - Facility Personnel
      - Energy manager (leads team)
      - Plant manager/owner
      - Maintenance
      - Production
      - Billing/accounting
    - Equipment Vendors and Suppliers
    - Technical Assistance Provider or Consultant



#### Identify Opportunities (cont.)

#### ■ Determine Goals & Metrics

- ✓ Lower energy bills (usage and demand)
- ✓ Lower operating and maintenance (O&M) costs
- ✓ Improve employee comfort & indoor air quality
- ✓ Reduce environmental impact



#### Identify Opportunities (cont.)

- ☐ Gather site data information
  - √ Lighting count
  - Read equipment nameplates
  - ✓ HVAC data
  - ✓ Production data
  - Equipment operating schedules
  - ✓ Motor survey
  - Equipment utilizing natural gas
  - ✓ Plug load count of office equipment, break room equipment, etc.
  - √ Known energy issues



#### Identify Opportunities (cont.)

- Identify energy conservation measures (ECMs)
  - Brainstorm opportunities
  - ✓ Include both energy and cost savings
  - ✓ Prioritize & rank opportunities
- Determine payback on ECMs



#### **Energy Opportunities**

- No Cost
  - ✓ Incidental activities
  - √ No purchases required
  - Minimal labor required
- Low Cost
  - ✓ Purchases within existing O&M budget
  - ✓ Some dedicated labor needed
- Capital Cost
  - ✓ Sometimes it takes money to save money



### Establish a Plug Load Plan

- PC power settings/security patch management
- Vending machine power control
- Standby power
  - √ Use of power strips
  - ✓ Unplug if not using
  - ✓ Office equipment
  - ✓ ENERGY STAR rated
- Seasonal shutdown
- Refrigerators
- Kitchen equipment
- Water heaters









# Ensure Key Maintenance Activities Are Performed

- For Example: HVAC
  - √ Filter changing/cleaning
  - √ Fan belt replacements
  - ✓ Coil cleaning
  - ✓ AC condensation drip pans
  - ✓ Duct leak prevention



### Provide Energy Efficiency Training

#### ■ Types of Training

- Awareness policies, practices, projects, general concepts
- ✓ Education methods, techniques, procedures, technical concepts
- ✓ Job-specific technical maintenance, operations, custodians, food service, admin
- √ Task-specific technical designated person, checklist, specific instructions, schedule



#### Assign Responsibility for Common

Areas

- Hallways
- Multi-purpose rooms
- Cafeterias
- Auditoriums
- Restrooms
- Production areas
- Meeting areas
- Warehouse
- Storage areas

#### **ACME Company**

#### **Common Areas Checklist**

**Space: Office Area** 

**Monitor: Anita Jones** 

X Lights

X Doors/Windows

N/A Computers

**Temperature** 

**X** Settings

N/A Water Fixtures

N/A Exhaust Fans

**Notes:** 



### Upgrade Lighting

- Incandescents to CFLs
- Lighting controls (timers, sensors)
- T-12s to T-8s
  - ✓ About a 20% reduction in power requirements
- T-5 high-bay lighting (e.g. warehouses)



#### Install Timers & Occupancy Sensors

- Vending machines have a captive audience
  - ✓ Why light them?
- Lighting occupancy sensors

| <u>Application</u>    | <b>Energy Sa</b> | <u>vings</u> |
|-----------------------|------------------|--------------|
| Offices (Private)     | 25-50%           |              |
| Offices (Open Spaces) | 20-25%           |              |
| Rest Rooms            | 30-75%           |              |
| Corridors             | 30-40%           | 6            |
| Storage Areas         | 45-65%           |              |
| Meeting Rooms         | 45-65%           |              |
| Conference Rooms      | 45-65%           |              |
| Warehouses            | <b>50-75%</b>    |              |



### Replace Exit Signs With LED

- Can be done with in-house maintenance staff
- Add to your Preventative Maintenance program
- Can be done in conjunction with retrofit projects
- ☐ Life cycle is more than 10+ years
- ■You probably have more than you think, and the savings are 24/365

| Exit Lamp<br>Type | Lamp Life   | Energy<br>Usage<br>(kWh/yr) | Cost<br>(\$0.06/kWh) | Lamp Cost | 10 yr<br>Operating<br>Cost |
|-------------------|-------------|-----------------------------|----------------------|-----------|----------------------------|
| Incadescent       | 2.8 months  | 350                         | \$21.00              | \$2       | \$295.72                   |
| Fluorescent       | 10.8 months | 140                         | \$8.40               | \$5       | \$139.50                   |
| LED               | 10+ years   | 44                          | \$2.64               | \$10      | \$36.40                    |



#### Install Programmable Thermostats

- Identify good candidate areas
  - ✓ Conference rooms
  - Cafeterias
  - ✓ Other common areas
- Check for compatibility with HVAC system
- Ensure optimal settings, setbacks, and time scheduling
- Consider reasonable overrides

Every 1 F ≈ 1% Savings



### Establish a Recognition Program

- Appreciation for ideas and hard work
- Award ceremonies for visibility
- Recognition at staff meetings
- Everyone begins to see saving energy as a priority







# Managing Buildings and Grounds for Air Quality

May 25, 2010

- Bob Miles
  Senior Sustainability Engineer
  robert.miles@louisville.edu
- Cheryl Eakle
   Sustainability Engineer
   cheryl.eakle@louisville.edu
- Victoria Kmiec
   Student Engineer
   <a href="mailto:v.kmiec@louisville.edu">v.kmiec@louisville.edu</a>
- 502-852-0965
- www.kppc.org

# How do emissions of air pollution impact our community?



# National Ambient Air Quality Standards (NAAQS)

- US EPA sets national standards for common pollutants
  - Health-based standards
  - Reviewed periodically
- Consequences of nonattainment
  - Loss of economic development opportunities
  - Restrictive permitting requirements
  - Loss of federal highway and transit funding





### **NAAQS** Attainment

#### May 2010 Status

| Pollutant                          | Standard               | Averaging Time       | Attainment Status |
|------------------------------------|------------------------|----------------------|-------------------|
| Carbon Monoxide                    | 9 ppm                  | 8-hour               | Attainment        |
| Carbon Monoxide                    | 35 ppm                 | 1-hour               | Attainment        |
| Load                               | $0.15  \mu g/m^3$      | Rolling 3-Mo Average | Attainment        |
| Lead                               | $1.5  \mu g/m^3$       | Quarterly Average    | Attainment        |
| Nitrogon Diovido                   | 0.053 ppm              | Annual Average       | Attainment        |
| Nitrogen Dioxide                   | 0.10 ppm               | 1-hour               | Attainment        |
| Particulate Matter (PM10) 150 μg/m |                        | 24-hour              | Attainment        |
| Particulate Matter (PM2.5)         | 15.0 μg/m <sup>3</sup> | Annual Average       | Nonattainment     |
| Particulate Matter (PMZ.5)         | 35 μg/m <sup>3</sup>   | 24-hour              | Attainment        |
| Ozone                              | 0.08 ppm               | 8-hour               | Attainment        |
| Sulfur Dioxide                     | 0.03 ppm               | Annual Average       | Attainment        |
| Juliui Dioxide                     | 0.14 ppm               | 24-hour              | Attainment        |



# **NAAQS** Revisions

|                 | Lead     | NOx | SO <sub>2</sub> | Ozone | РМ       | СО       |
|-----------------|----------|-----|-----------------|-------|----------|----------|
| Final           | <b>✓</b> | ✓   |                 |       |          |          |
| Proposed        |          |     | ✓               | ✓     |          |          |
| Under<br>Review |          |     |                 |       | <b>✓</b> | <b>✓</b> |



## **NAAQS** Attainment

### Anticipated Status

| Pollutant                  | Standard                      | Averaging Time       | Attainment Status |
|----------------------------|-------------------------------|----------------------|-------------------|
| Carbon Monoxide            | 9 ppm                         | 8-hour               | Attainment        |
| Carbon Monoxide            | 35 ppm                        | 1-hour               | Attainment        |
| Lead                       | $0.15  \mu g/m^3$             | Rolling 3-Mo Average | Status Uncertain  |
| Leau                       | $1.5  \mu g/m^3$              | Quarterly Average    | Attainment        |
| Nitrogen Dioxide           | 0.053 ppm                     | Annual Average       | Attainment        |
| Nitrogen Dioxide           | 0.10 ppm                      | 1-hour               | Status Uncertain  |
| Particulate Matter (PM10)  | 150 $\mu g/m^3$               | 24-hour              | Attainment        |
| Double Matter (DNA2 E)     | 10.0 to<br>14.0 μg/m³         | Annual Average       | Nonattainment     |
| Particulate Matter (PM2.5) | 25 to<br>35 μg/m <sup>3</sup> | 24-hour              | Status Uncertain  |
| Ozone                      | 0.060 to<br>0.070 ppm         | 8-hour               | Nonattainment     |
| Sulfur Dioxide             | 0.050 to<br>0.10 ppm          | 1-hour               | Nonattainment     |



## Poised for Progress

- Our community has a history of success in meeting air quality challenges
- Strong knowledge base exists among stakeholders and residents
- Attainment will require changes by all
- The need for innovative solutions is urgent



## Air Quality Alerts

 Air Quality Alerts are called for days when air quality is forecasted to be in the Unhealthy for Sensitive Groups range and above



- Use Air Quality Alerts for:
  - Planning daily activities
  - Adjusting project schedules
- Sign-up for the KAIRE Network to receive alerts by email



# Clearing the Air

A Seminar Series

| March 30 <sup>th</sup> | Day Seminars Air Quality 101                                                                           | Evening Seminars Air Quality 101                                     |
|------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                        |                                                                                                        |                                                                      |
| May 25 <sup>th</sup>   | Managing Buildings and Grounds for Air Quality with special guest Kentucky Pollution Prevention Center | Lawn Care for<br>Cleaner Air                                         |
| June 29 <sup>th</sup>  | Idle Reduction Tool Kit:<br>Turn the Key for<br>Cleaner Fleets                                         | You and Your Car: The Key to Cleaner Air and Greater Fuel Efficiency |
| July 27th              | Commercial Energy Efficiency with special guest LG&E                                                   | Residential Energy Efficiency with special guest LG&E                |
| Aug. 31st              | It All Adds Up: A Guide To Air<br>Monitoring                                                           | It All Adds Up: A Guide To Air<br>Monitoring                         |

State of the Air

Lauren Anderson

with Executive Director

State of the Air

Lauren Anderson

with Executive Director



# For more information please visit www.louisvilleky.gov/APCD

